Both the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle
نویسندگان
چکیده
This study examined the influence of the elongation of attached crossbridges and residual force enhancement on joint torque enhancement by the stretch-shortening cycle (SSC). Electrically evoked submaximal tetanic plantar flexions were adopted. Concentric contractions were evoked in the following three conditions: after 2 s isometric preactivation (ISO condition), after 1 s isometric then 1 s eccentric preactivation (ECC condition), and after 1 s eccentric then 1 s isometric preactivation (TRAN condition). Joint torque and fascicle length were measured during the concentric contraction phase. While no differences in fascicle length were observed among conditions at any time points, joint torque was significantly higher in the ECC than TRAN condition at the onset of concentric contraction. This difference would be caused by the dissipation of the elastic energy stored in the attached crossbridges induced by eccentric preactivation in TRAN condition due to 1 s transition phase. Furthermore, joint torques observed 0.3 and 0.6 s after concentric contraction were significantly larger in the ECC and TRAN conditions than in the ISO condition while no difference was observed between the ECC and TRAN conditions. Since the elastic energy stored in the attached crossbridges would have dissipated over this time frame, this result suggests that residual force enhancement induced by eccentric preactivation also contributes to joint torque enhancement by the SSC.
منابع مشابه
Factors of Force Potentiation Induced by Stretch-Shortening Cycle in Plantarflexors
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion f...
متن کاملInfluence of residual force enhancement and elongation of attached cross‐bridges on stretch‐shortening cycle in skinned muscle fibers
Increased muscle force during stretch-shortening cycles (SSCs) has been widely examined. However, the mechanisms causing increased muscle force in SSCs remain unknown. The purpose of this study was to determine the influence of residual force enhancement and elongation of attached cross-bridges on the work enhancement in SSCs. For the Control condition, skinned rabbit soleus fibers were elongat...
متن کاملEffect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors
The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction). The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in ...
متن کاملThe stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis
The stretch-shortening cycle (SSC) occurs in most everyday movements, and is thought to provoke a performance enhancement of the musculoskeletal system. However, mechanisms of this performance enhancement remain a matter of debate. One proposed mechanism is associated with a stretch-induced increase in steady-state force, referred to as residual force enhancement (RFE). As yet, direct evidence ...
متن کاملResidual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans.
Stretch of an activated muscle causes a transient increase in force during the stretch and a sustained, residual force enhancement (RFE) after the stretch. The purpose of this study was to determine whether RFE is present in human muscles under physiologically relevant conditions (i.e., when stretches were applied within the working range of large postural leg muscles and under submaximal volun...
متن کامل